Calcium Magnesium Acetate as a de-icing/anti-icing agent on local authority urban roads in Dunedin

Paul Howard and Fred Coralde
Introduction

Winter maintenance activities in Dunedin are quite extensive due to the geographical location. Winters here involve many frosts that require reactive maintenance to ensure road user safety.

- Dunedin City Council is actively seeking to enhance its winter maintenance programme with the use of CMA.
- This presentation is in two parts:
 - Strategic Planning
 - Fred Coralde, Dunedin City Council
 - Operational Aspects
 - Paul Howard, Downer EDi Works
STRATEGIC PLANNING
Why bother?

- current policy working perfectly
- rate payers do not know
- is it worth trying?
Council’s approach

• roads are narrow and rolling
• improve the levels of service
• increasing road safety awareness profile
• long term LTCCP strategy
The 2006 trial

- resource consent
- roads affected
- the strategy
The result.....

• public initial perception
• the positive ‘buying-in’
• environmental report
• the disadvantages
Strategy developed

- trial continuity
- the expansion strategy
- desired outcome
OPERATIONAL ASPECTS
CMA vrs Grit

- Calcium Magnesium Acetate – de-icing/anti-icing agent applied in pellet form or dissolved to form a liquid (common in NZ).
- CMA as an anti-icing agent remains active on the road for up to five days weather permitting.
- CMA allows forward planning and is safer to apply in dry conditions.
- CMA is visually difficult to detect so driver confidence lowers.
- Grit is a cheaper raw material (low initial capital).
- Grit used historically as a mechanical prevention to skidding on ice.
- Grit is a reactive treatment and is very abrasive to road markings it also needs to be collected or will fill mudtanks.
Objectives

- Meet the needs of the Dunedin City Council
- Improve knowledge of CMA abilities and applications
 - lower PSV chip
 - urban environment, lower speed, alignment.
Methodology

- Vehicle was a Toyota Corolla fitted with a Vericom VC3000, ABS system disabled.
- Tyre size, type and pressure recorded.
- Vehicle speed was 30km/hr.
- Selected sites were:

<table>
<thead>
<tr>
<th>#</th>
<th>Location</th>
<th>Surface</th>
<th>Slope (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stevenson Rd</td>
<td>Mix 6 Asphalitic Concrete</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>Stevenson Rd</td>
<td>Type 2 Slurry Seal</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>Stuart Street</td>
<td>Mix 10 Asphalitic Concrete</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>Three Mile Hill</td>
<td>Second Coat seal (Gr4) – Worn, in good condition</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>Three Mile Hill</td>
<td>Second Coat seal (Gr4) – Worn, flushed areas</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>Taeiri Rd</td>
<td>Two Coat seal (Gr 4/6) – Worn, in good condition</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Methodology continued

- Sites selected based on surface type and location.
- Sequence of testing:
 - an untreated state
 - after gritting (road then swept)
 - immediately after CMA application
 - post CMA application, after drying.
- Locked Wheel Braking (LWB) used as test method.
- NZ Police driver and Police measuring equipment used.
The Setup
Conclusion

- Grit significantly increased average stopping distances.
- The increase in stopping distance was more significant on the finer textured asphalt and slurry surfaces.
- CMA (post application) performed better on average than grit.
- CMA (dry) performed better on all surfaces than a dry untreated road.