Technical Session on Road Dust Management

David Jones, PhD
University of California Pavement Research Center

Oxford English Dictionary

Dirt: any foul or filthy substance, as mud, grime, excrement.

From old Norse word drit
Introduction

- Unpaved roads
 - Function
 - Problems
 - Sustainability
 - Management

- Improvement options
 - Upgrade to sealed standard
 - Rehabilitation (regravel and reshape)
 - Fines preservation (dust control)
 - Surface stabilization
 - Understand the role of each

Guidelines
Guidelines

Guidelines?
Why Read Guidelines?

In the Next ± 90 Minutes

- Part 1
 - Unpaved road materials

- Part 2
 - Chemical treatments
Part 1: Understanding Unpaved Road Materials

David Jones, PhD
University of California Pavement Research Center

South African “Funky” Chart
Outline

- Introduction
- Road materials
 - Key material properties
 - Performance prediction
- Construction
 - Shape/drainage
 - Compaction
- Summary

Introduction

- Materials selected to optimize all weather performance
 - No dust when dry
 - Passable when wet
- Numerous specifications available worldwide
- Performance based are most useful
- Performance dependent on:
 - Particle size distribution
 - Plasticity (clay content)
 - Strength (bearing capacity)
 - Aggregate hardness
- Can be improved through chemical or mechanical modification
 - Chemical treatments best used for “keeping a good road good”
Outline

- Introduction
- Road materials
 - Key material properties
 - Performance prediction
- Construction
 - Shape/drainage
 - Compaction
- Summary

Understanding Materials
Materials - Grading

Materials - Clay Content

Shrinkage
Materials - Clay Content

Liquid and Plastic Limit Tests = Plasticity Index

Test Results (±NZ $550)
Guidelines & Specs - US

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Guidelines</th>
<th>FHWA Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHWA</td>
<td>USFS</td>
</tr>
<tr>
<td></td>
<td>Haul</td>
<td>General Use</td>
</tr>
<tr>
<td>Sieve (mm)</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>90 – 100</td>
</tr>
<tr>
<td></td>
<td>4.75</td>
<td>50 – 78</td>
</tr>
<tr>
<td></td>
<td>2.36</td>
<td>37 – 67</td>
</tr>
<tr>
<td></td>
<td>0.425</td>
<td>13 – 35</td>
</tr>
<tr>
<td></td>
<td>0.075</td>
<td>4 – 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>4 – 12</td>
<td>2 – 9 if 0.075 is <12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><2 if 0.075 is >12%</td>
</tr>
</tbody>
</table>

1. Range for 0.075 mm sieve is 6.0 to 12.0% if the PI is greater than zero
Using Test Results

<table>
<thead>
<tr>
<th>Sieve (mm)</th>
<th>NZ Type-1</th>
<th>NZ Type-2</th>
<th>Unpaved Road (FHWA)</th>
<th>Unpaved Road (USFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5</td>
<td>--</td>
<td>100</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>--</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>--</td>
<td>65 - 100</td>
<td>84 - 100</td>
</tr>
<tr>
<td>13</td>
<td>60</td>
<td>70 - 100</td>
<td>72 - 100</td>
<td>72 - 100</td>
</tr>
<tr>
<td>9.5</td>
<td>25 - 35</td>
<td>50 - 78</td>
<td>40 - 62</td>
<td>50 - 76</td>
</tr>
<tr>
<td>4.7</td>
<td>25 - 35</td>
<td>37 - 67</td>
<td>40 - 62</td>
<td>50 - 76</td>
</tr>
<tr>
<td>2.3</td>
<td>20 - 35</td>
<td>--</td>
<td>13 - 35</td>
<td>22 - 36</td>
</tr>
<tr>
<td>1.18</td>
<td>20 - 35</td>
<td>--</td>
<td>4 - 15</td>
<td>10 - 20</td>
</tr>
<tr>
<td>0.425</td>
<td>--</td>
<td>13 - 35</td>
<td>4 - 15</td>
<td>22 - 36</td>
</tr>
<tr>
<td>0.075</td>
<td>≤ 8</td>
<td>4 - 15</td>
<td>2 - 9</td>
<td>10 - 20</td>
</tr>
<tr>
<td>PI</td>
<td>≤ 6</td>
<td>≤ 6</td>
<td>4 - 12</td>
<td>2 - 9</td>
</tr>
</tbody>
</table>

Key Grading & Plasticity Issues

- **No fines**
- **Good**
- **Too many fines**

Source: US Forest Service
Material Design

- **Grading coefficient**
 - Ratio between coarse, intermediate, and fine
 - \[((P_{25} - P_{2.36}) \times P_{4.75}) / 100 \]
 - Target somewhere between 15 and 35

- **Shrinkage product (clay factor)**
 - Linear shrinkage \(\times \) Po.425
 - Target somewhere between 100 and 365
 - Can use \(\frac{1}{2} \) PI if BLS is not tested
Material Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size distribution factor (G_c)</td>
<td>15 - 35</td>
</tr>
<tr>
<td>Weighted clay factor (S_p)</td>
<td>100 - 365</td>
</tr>
<tr>
<td>Maximum size (mm)</td>
<td>40</td>
</tr>
<tr>
<td>Strength factor (CBR)</td>
<td>>15</td>
</tr>
<tr>
<td>Hardness factor (TIV)</td>
<td>20 - 65</td>
</tr>
</tbody>
</table>

** Calibrate for local use, conditions and test methods! Performance is always dependent on construction and maintenance quality!**

Outline

- Introduction
- Guidelines and specifications
- Road materials
 - Key material properties
 - Performance prediction
- Construction
 - Shape/drainage
 - Compaction
- Summary
Performance Prediction

- Increasing plasticity
- Shrinkage product

Grading coefficient:
- Increasing coarseness / increasing gap

- Erodible
- Good
- Ravels

- Slippery and dusty

- Corrugates and ravels

Calibrate for local use!
Calibrate for Local Use

Calibrate for Local Use
Performance Prediction

- **Erosion**
- **Slippery and dusty**
- **Good**
- **Ravels**

Grading coefficient

- **Corrugates and ravel**

Shrinkage product

- 0
- 100
- 365

Erosion

- Image of a dirt road with侵蚀 marks.
Performance Prediction

- Shrinkage product
- Slippery and dusty
- Erodible
- Good
- Ravels
- Corrugates and ravels

Corrugation and Raveling

- Grading coefficient
- Corrugation and Raveling

Image of a road with corrugation and raveling.
Performance Prediction

- Slippery and dusty
- Erodible
- Good
- Ravels

Grading coefficient

Corrugation and Raveling
Corrugation and Raveling

Performance Prediction

- Shrinkage product
- Slippery and dusty
- Erodible
- Good
- Ravels
- Corrugates and ravel s
- Grading coefficient
Dry Passability

Performance Prediction

Shrinkage product

Slippery and dusty

Erodible

Good

Corrugates and ravels

Grading coefficient

Ravels

UCPRC
Raveling

Performance Prediction

- Erodible
- Good
- Ravels
- Corrugates and ravelas

Grading coefficient

Shrinkage product

Slippery and dusty
Slipperiness

Dusty
Performance Prediction

- Slippery and dusty
- Good, but dusty
- Erodible
- Corrugates and ravels
- Ravels

Grading coefficient:
- Good
- Good, but dusty
- Erodible
- Slippery and dusty

Shrinkage product:
- 0
- 100
- 365

Good Gravel Road
Good Gravel Road

Performance Prediction

- Slippery and dusty
- Good, but dusty
- Good
- Erodible
- Corrugates and ravels
- Ravels

Shrinkage product

Grading coefficient
Good, but Dusty

Photo courtesy of Jeb Tingle
Exercise

<table>
<thead>
<tr>
<th>Sieve (mm)</th>
<th>NZ Type-1</th>
<th>NZ Type-2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5</td>
<td>--</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>70 - 80</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>--</td>
<td>--</td>
<td>74</td>
</tr>
<tr>
<td>9.5</td>
<td>45 - 75</td>
<td>50 - 60</td>
<td>61</td>
</tr>
<tr>
<td>4.75</td>
<td>25 - 55</td>
<td>35 - 50</td>
<td>46</td>
</tr>
<tr>
<td>2.36</td>
<td>15 - 35</td>
<td>25 - 40</td>
<td>30</td>
</tr>
<tr>
<td>1.18</td>
<td>2 - 35</td>
<td>20 - 35</td>
<td>23</td>
</tr>
<tr>
<td>0.425</td>
<td>--</td>
<td>--</td>
<td>16</td>
</tr>
<tr>
<td>0.075</td>
<td>≤ 8</td>
<td>≤ 8</td>
<td>8</td>
</tr>
<tr>
<td>PI</td>
<td>≤ 6</td>
<td>≤ 6</td>
<td>4</td>
</tr>
</tbody>
</table>

Exercise

- GC = 32
 - (100 - 34) x 46
 - 3,220 / 100
 - 32

- SP = 6

Not rocket science, just rock and a little science!
Deformation - Potholes

Deformation - Rutting
Hardness

![Image of a road surface with cracks and debris]

Guidelines - US

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FHWA</th>
<th>USFS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haul</td>
<td>General Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve (mm)</td>
<td>25</td>
<td>100</td>
<td>97 – 100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>4.75</td>
<td>50 – 78</td>
<td>43 – 53</td>
<td>51 – 63</td>
</tr>
<tr>
<td></td>
<td>2.36</td>
<td>37 – 67</td>
<td>23 – 32</td>
<td>28 – 39</td>
</tr>
<tr>
<td></td>
<td>0.425</td>
<td>13 – 35</td>
<td>15 – 23</td>
<td>19 – 27</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>4 – 12</td>
<td>2 – 9 if 0.075 is <12%</td>
<td>32 if 0.075 is >12%</td>
<td></td>
</tr>
<tr>
<td>Grading Coefficient: (15 – 35)</td>
<td>32</td>
<td>32</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Low range</td>
<td>31</td>
<td>34</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Mid range</td>
<td>26</td>
<td>36</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>High range</td>
<td>49</td>
<td>41</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Worst case</td>
<td>32</td>
<td>32</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Shrinkage Product: (100 – 365)</td>
<td>26</td>
<td>30</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Low range</td>
<td>192</td>
<td>105</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>Mid range</td>
<td>420</td>
<td>207/23</td>
<td>243/27</td>
<td>243/27</td>
</tr>
<tr>
<td>High range</td>
<td>420</td>
<td>23</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Worst case</td>
<td>420</td>
<td>23</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>
Guidelines – US

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FHWA</th>
<th>USFS Haul</th>
<th>USFS General Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve (mm)</td>
<td>25</td>
<td>100</td>
<td>97 – 100</td>
</tr>
<tr>
<td></td>
<td>4.75</td>
<td>50 – 78</td>
<td>43 – 53</td>
</tr>
<tr>
<td></td>
<td>2.36</td>
<td>37 – 67</td>
<td>23 – 32</td>
</tr>
<tr>
<td></td>
<td>0.425</td>
<td>13 – 35</td>
<td>15 – 23</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>4 – 12</td>
<td>2 – 9 if 0.075 is <12%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><2 if 0.075 is >12%</td>
<td></td>
</tr>
<tr>
<td>Grading Coefficient: (15 – 35)</td>
<td>32</td>
<td>32</td>
<td>37</td>
</tr>
<tr>
<td>Low range</td>
<td>31</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>Mid range</td>
<td>26</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>High range</td>
<td>49</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Worst case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrinkage Product: (100 – 365)</td>
<td>26</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>Low range</td>
<td>102</td>
<td>105</td>
<td>126</td>
</tr>
<tr>
<td>Mid range</td>
<td>420</td>
<td>207 – 23</td>
<td></td>
</tr>
<tr>
<td>High range</td>
<td>420</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Worst case</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance Prediction

- **Slippery and dusty**
- **Erodible**
- **Good but dusty**
- **Really good**
- **Corrugates and ravelers**

- **Grading coefficient**
- **Increasing coarseness / increasing gap**
- **Increasing plasticity**
- **Shrinkage product**
Discussion

- Materials that meet US guidance and specifications may still perform badly
 - Only two of the 14 potential materials are likely to perform well
 - Most materials likely to washboard and ravel
 - Some materials likely to be slippery/impassable when wet

- Problematic for inexperienced engineers
- Aggregate suppliers and contractors still meet spec
- Importance of using PI (weighted) and grading together is clear
Outline

- Introduction
- Guidelines and specifications
- Road materials
 - Key material properties
 - Performance prediction
- Construction
 - Shape/drainage
 - Compaction
- Summary

Shape and Drainage
Why Compact?
- ± 2,000 tonnes to place 75mm of gravel on a 1.5km x 7m road
- 25mm lost within 3 months if not compacted

Maintenance Compaction
Outline

- Introduction
- Guidelines and specifications
- Road materials
 - Key material properties
 - Performance prediction
 - Material blending
- Construction
 - Shape/drainage
 - Compaction
- Summary

Summary

- Materials should be selected to optimize all weather performance
 - No dust when dry
 - Passable when wet
- Use any specification, but understand performance
 - Select the best possible material
 - Blend if necessary
 - Change maintenance programs to suit
 - Improve with chemicals
- Testing is not expensive and will save $$
Time for a Break?