NEW PERSPECTIVES ON UNSEALED ROADS IN SOUTH AFRICA

Phil Paige-Green
Nelson, 20 July 2007
THANK YOU:

Organisers
Sponsors
Summary

- Background
- Implementation
- Problems
- Conservation
- Chemical stabilization
Background

- Unsealed roads still comprise about 75% of all roads in SA (and elsewhere)
- Today, even more burdened with the baggage accompanying them
 - Continual maintenance
 - High environmental impacts
Maintenance

• Ongoing and costly
Environmental impacts

- “Borrow” pits
- Erosion
- Dust
- (Safety)
Problems

- Often poor performance
- Frequent and costly maintenance
- Continual gravel loss

- HOW DO WE ADDRESS THESE ??
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum size</td>
<td>37.5 mm</td>
</tr>
<tr>
<td>Max oversize index</td>
<td>5 %</td>
</tr>
<tr>
<td>Shrinkage product ((S_p))</td>
<td>100 – 365 (240)</td>
</tr>
<tr>
<td>Grading coefficient ((G_c))</td>
<td>16 – 34</td>
</tr>
<tr>
<td>Min CBR (%)</td>
<td>15 at 95% Mod AASHTO</td>
</tr>
<tr>
<td>Treton Impact value (%)</td>
<td>20 - 65</td>
</tr>
</tbody>
</table>

\(S_p \) – Weighted bar linear shrinkage

\(G_c \) – \((P26.5 – P2)*P4.75/100\)
Derivation

- Monitoring of 110 sections of *existing* roads
- Factorial design
Test methods

- **A**: Erodible
- **B**: Corrugates and ravels
- **C**: Ravels
- **D**: Slippery

Chart Details
- **Y-axis**: Shrinkage Product
 - 550
 - 500
 - 450
 - 400
 - 350
 - 300
 - 250
 - 200
 - 150
 - 100
 - 50
 - 0
- **X-axis**: Grading Coefficient
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20
 - 22
 - 24
 - 26
 - 28
 - 30
 - 32
 - 34
 - 36
 - 38
 - 40
 - 42
 - 44
Deterioration prediction

Gravel loss

AGL = 3.65[ADT(0.059 + 0.0027N - 0.0006P26) – 0.367N - 0.0014PF + 0.0474P26]

Roughness

LnR = D[13.8 + 0.00022PF + 0.064S1 + 0.137P26 + 0.0003.N.ADT + GM(6.42 - 0.063P26)]

LRA = 1.07 + 0.699LRB + 0.0004ADT - 0.13DR + 0.0019LABMAX
Implementation

- Requires a paradigm shift!!
- Specifications were only implemented properly in early 2000s
- (W Cape, G van Zyl)
- Material and construction strictly controlled
 - Oversize
 - Properties (E zone only)
 - Compaction (wet and to refusal)
Implications

• Costs increased 30%
 – 10% material selection, design & QA
 – 20% Construction
 • Initial slower progress
 • Drainage and road bed preparation
 • Trial sections
 • Extra grid rolling or crushing
 • Higher compaction (97% or refusal)

• Consequence?
Drainage

Existing Road Profile
Roughness Deterioration
(No Maintenance section)

MR270: km32 - 32.5: Roughness Deterioration (Model vs. Actual)

AADT = 66, 17% heavy
Roughness Deterioration (Bladed section)

MR276: km1.8 - 2.3: Roughness Deterioration (Model vs. Actual)

AADT = 323, 19% heavy
Roughness Deterioration
(Bladed section)

MR276: km1.8 - 2.3: Roughness Deterioration (Model vs. Actual)
Gravel loss

MR 276 Gravel Loss

Gravel loss

Years

Gravel Loss Predicted Gravel loss measured
Suggested approach

• Outcome not surprising
• 20 sections being monitored
• Constructed carefully
• More light maintenance
 – Spread loose gravel
 – Repair spots
• Rip and recompact when IRI > ± 7.7
 (after 2 – 3 years)
Recent problems

• Couple of roads recently
• Loose within 4 weeks after construction
 – Poor construction
 – Crystallization of soluble salts
Recent problems

- Quartzite and calcrete
- Construction records (OK)
- Suggested solution
 - Rip
 - Grid roll
 - Water & Compact
- Solved problems
 - Poor compaction
 - Beware construction records
Recent problems

- Shale/mudrock
- Construction records (OK)
- Ravelling/crumbling of surface
- Cause
 - Material variability in BP (hard and soft)
 - Slushed followed by very dry
 - Attracted traffic (trucks saved 30 km)
- Solution
 - Grading
 - Localised rip and recompact
Gravel Conservation

- Major problem
- 27 Acts
- Case study of Kruger National Park

Area = 19 000 km²
Nearly the same size as Israel
1.25 Million visitors/year
1746 km unsealed roads
Gravel loss in KNP

- ± 13 mm/y (120 000 m³/y)
- Erosion (12 mm) & traffic (1 mm)
- Replacement required
- Disagreement between Nature Conservation Dept and Roads Dept
Solutions

- Seal
- Narrower roads
- Better construction
- Treat
Treatment

- Various experiments
- Sceptical but open-minded
ACTION OF SULFONATED OILS ON CLAYS

• Theoretically:

- Attach to clay particles (ionic exchange)
- Water expulsion
- “Water proofing” through hydrophobic action
- Better compaction (lubrication and less water to compress)
Testing for suitability

- Need plasticity and correct clay mineralogy
- Grading (% < 0.075 mm)
- Do they improve the soaked CBR?
- Normal CBR test with different products and application rates
- If the required CBR is produced, go ahead.
FIGURE 4: THE EFFECT OF TREATMENT OF SOILS WITH LIME AND DIFFERENT SPP's AT 0.03 l/m²

FIGURE 5: THE EFFECT OF TREATMENT OF SOILS WITH DIFFERENT SPP CONCENTRATIONS
EFFECT OF CHEMICALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Diabase</th>
<th>Black clay</th>
<th>Ferricrete</th>
<th>Chert</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>32</td>
<td>2</td>
<td>181</td>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td>Product B</td>
<td>76</td>
<td>2</td>
<td>137</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>Product G</td>
<td>65</td>
<td>2</td>
<td>144</td>
<td>41</td>
<td>37</td>
</tr>
<tr>
<td>Product C</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>45</td>
</tr>
<tr>
<td>Product D</td>
<td>69</td>
<td>-</td>
<td>-</td>
<td>46</td>
<td>38</td>
</tr>
</tbody>
</table>
Conclusions

• Unsealed roads still very important
• Can’t get away from them
• Can improve their performance
 – Better construction
 – Treatment – jury is still out?
• Sustainability is questionable
Final thought

When you talk to the half-wise, twaddle;
when you talk to the ignorant, brag;
when you talk to the sagacious, look very humble and ask their opinion

(Edward G. Bulwer-Lytton 1803-1873)

THANK YOU