The Resilience of Road Access in the Wellington Region

Presented at the 2012 REAAA Road Show, Wellington, 17 August 2012
by
Brabhaharan
Technical Principal, Geotechnical Engineering & Risk
Opus International Consultants
Acknowledgements
Outline

- What is Resilience?
- How Resilient is Road Access?
- Will Transmission Gully scheme help?
- Questions?
“the ability to recover readily and return to its original form from adversity”

RESILIENCE
Why Resilience?

- Transportation networks are vital lifelines.
- We live in a country prone to many natural hazards.
- We rely on a few transportation corridors.
Resilience

- Quality
- Vulnerability or Loss of Service
- Time for Recovery
- Time

• Resilience
(Smaller the area the greater the resilience)
Research

Resilience based approach
Performance

- **Damage State** - severity of damage
- **Availability State** - level of access after event
- **Outage State** - duration of reduced access

Diagram showing:
- Level of Service
- Vulnerability or Loss of Service
- Time for Recovery
- Resilience (Smaller the area the greater the resilience)
Resilience States

Availability State

<table>
<thead>
<tr>
<th>Availability Level</th>
<th>Availability State</th>
<th>Availability Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full</td>
<td>Full access except condition may require care.</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
<td>Available for slow access, but with difficulty by normal vehicles due to partial lane blockage, erosion or deformation.</td>
</tr>
<tr>
<td>3</td>
<td>Single Lane</td>
<td>Single lane access only with difficulty due to poor condition of remaining road.</td>
</tr>
<tr>
<td>4</td>
<td>Difficult</td>
<td>Road accessible single lane by only 4x4 off road vehicles.</td>
</tr>
<tr>
<td>5</td>
<td>Closed</td>
<td>Road closed and unavailable for use.</td>
</tr>
<tr>
<td>6</td>
<td>Closed +</td>
<td>Road closed and unavailable for use and affecting alternate direction carriageway.</td>
</tr>
</tbody>
</table>
Resilience States

Outage State

<table>
<thead>
<tr>
<th>Outage Level</th>
<th>Outage State</th>
<th>Damage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open</td>
<td>No closure, except for maintenance</td>
</tr>
<tr>
<td>2</td>
<td>Minor</td>
<td>Condition persists for up to 3 days</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>Condition persists for 3 days to 2 weeks</td>
</tr>
<tr>
<td>4</td>
<td>Severe</td>
<td>Condition persists for 2 weeks to 3 months</td>
</tr>
<tr>
<td>5</td>
<td>Long term</td>
<td>Condition persists for > 3 months</td>
</tr>
</tbody>
</table>
Resilience of Road Networks

- **Level 1**
 - National Strategy
 - (Ministry of Emergency Management and NZ Transport Agency)

- **Level 2**
 - Regional Transportation Risk Management Strategy
 - (Regional Councils, Local Authority RCAs & NZ Transport Agency)

- **Level 3**
 - Road Network Asset Risk Management
 - (Road Controlling Authorities)

- **Level 4**
 - Emergency Management
 - (Road Controlling Authorities)

- **Level 5**
 - Project Development & Design
 - (Road Controlling Authorities & Designers)
Resilience of Access

- Likely to take more than 6 months to restore access
- Remain vulnerable to aftershocks
- Major impact on response and recovery
• National Strategy
 • (Ministry of Emergency Management and NZ Transport Agency)

• Regional Transportation Risk Management Strategy
 • (Regional Councils, Local Authority RCAs & NZ Transport Agency)

• Road Network Asset Risk Management
 • (Road Controlling Authorities)

• Emergency Management
 • (Road Controlling Authorities)

• Project Development & Design
 • (Road Controlling Authorities & Designers)
Pre-planning for Post – Earthquake Response

- Identification of critical areas
- How to restore access
- What resources required
- What prior engagement required?
Key Issues for Route Security

- Road form – cuttings, embankments, walls, viaducts
- Active fault crossings
- Performance of cut and fill slopes
- Geotechnical uncertainties
- Cost of solutions
Performance

- **Damage State** - severity of damage
- **Availability State** - level of access after event
- **Outage State** - duration of reduced access

Resilience

(Smaller the area the greater the resilience)
Route Security Philosophy

- *Highway open for full access in small hazard events*

- *Continued access or reopens after short closure (12 hrs to 3 days) in moderate hazard events*

- *Limited access can be restored within reasonable period (say 3 days to 2 weeks) after long return period event*
Active Faults

- Ohariu Fault 1,500 - 2,200 years
- Moonshine Fault > 11,000 years
- Active splinter of Ohariu Fault ~ 2,500 years
Road Forms Considered

- Benched cuttings with rock fall barriers
- Reinforced soil embankments
- Reinforced soil walls
- Half Bridges
- Viaducts
- Tunnel options
Highway alignment

- Avoid steep hillsides with thick colluvium on Eastern flank
- Avoid inferred landslide on Eastern flank of valley
- Use wider valley floor through Battle Hill
- Restricting Ohariu Fault crossings to one
- Crossing fault on earthworks road form, NOT viaducts
Cut Slopes

- Precedent cut slopes and natural slopes in the region
- Historical earthquake induced landslides
- Dominant shear / crush / fault defects in rock
- Rock mass failures in rock
Dominant Defects
Cut Slope Design Philosophy

- Cut Slope Stability
- Integrated Cut Slope Design
- Earthquake Performance
- Cost Effectiveness
- Rock Fall Management
Integrated Cut Slope Design

Cut slope angle

30 40 50 60 70 80 90

- Rock mass cut slope stability
- Earthquake performance
- Rock defect kinematic stability
- Rockfall management

Proposed cut slope

• low risk
• medium risk
• high risk
Cut Slope Configuration
Cut Slopes

- Adopted 40° to 50° slopes to 60 m height

- 35° slopes in higher 70 m to 75 m high cuts in sheared rock

- Avoided eastern flank of valley with higher cut slopes

- Provision for cut slope stabilisation where necessary
Wenchuan Earthquake, 2008
Wenchuan Earthquake, 2008
Road Forms Considered

- Benched cuttings with rock fall barriers
- Reinforced soil embankments
- Reinforced soil walls
- Half Bridges
- Viaducts
- Tunnel options
Resilience States

Availability State

<table>
<thead>
<tr>
<th>Availability Level</th>
<th>Availability State</th>
<th>Availability Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full</td>
<td>Full access except condition may require care.</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
<td>Available for slow access, but with difficulty by normal vehicles due to partial lane blockage, erosion or deformation.</td>
</tr>
<tr>
<td>3</td>
<td>Single Lane</td>
<td>Single lane access only with difficulty due to poor condition of remaining road.</td>
</tr>
<tr>
<td>4</td>
<td>Difficult</td>
<td>Road accessible single lane by only 4x4 off road vehicles.</td>
</tr>
<tr>
<td>5</td>
<td>Closed</td>
<td>Road closed and unavailable for use.</td>
</tr>
<tr>
<td>6</td>
<td>Closed +</td>
<td>Road closed and unavailable for use and affecting alternate direction carriageway.</td>
</tr>
</tbody>
</table>
Resilience States . . .

Outage State

<table>
<thead>
<tr>
<th>Outage Level</th>
<th>Outage State</th>
<th>Damage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open</td>
<td>No closure, except for maintenance</td>
</tr>
<tr>
<td>2</td>
<td>Minor</td>
<td>Condition persists for up to 3 days</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>Condition persists for 3 days to 2 weeks</td>
</tr>
<tr>
<td>4</td>
<td>Severe</td>
<td>Condition persists for 2 weeks to 3 months</td>
</tr>
<tr>
<td>5</td>
<td>Long term</td>
<td>Condition persists for > 3 months</td>
</tr>
</tbody>
</table>
Expected Performance

- Remains open in moderate earthquake and storm events, or small sections closed can be quickly opened.

- Highway closed in large earthquake events at some sections, particularly if Ohariu Fault rupture event . . . but can be opened for limited access in 3 days to 2 weeks.

- This will significantly improve access into Wellington, including after a major earthquake.
Project Cost

- Preferred Scheme ~ $1 billion
- Some $300 Million savings over original scheme
Conclusions

- Resilience is a useful concept for understanding the security of our road network.

- The access into Wellington is likely to be unavailable for a long time after a major earthquake.

- Understanding resilience expectations within wider network is important.
Conclusions

- Transmission Gully highway will significantly enhance resilience of access for Wellington
- Resilience can be enhanced by early focus on route security
- Resilience doesn’t necessarily cost more!